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Abstract: Artificial-intelligence-based analysis methods can provide objective and accurate results.
This study aimed to evaluate the performance of machine learning algorithms to classify yeast-
inoculated and uninoculated tomato samples using fluorescent spectroscopic data. For this purpose,
three different tomato types were used: ‘local dwarf’, ‘Picador’, and ‘Ideal’. Discrimination analysis
was applied with six different machine learning (ML) algorithms. Confusion matrices, average
accuracies, F-Measure, Precision, ROC (receiver operating characteristic) Area, MCC (Matthews
Correlation Coefficient), and precision-recall area values obtained as a result of the application of
different ML algorithms were compared. Based on the fluorescence spectroscopic data, the application
of six ML algorithms showed that the first two tomato types were classified with 100% accuracy and
the last type was classified with 95% accuracy. The results of the study show that the fluorescence
spectroscopy data are strongly representative of tomato species. ML methods fed with these data
provide high-performance discrimination.

Keywords: yeast-inoculated tomato; fluorescence spectroscopic data; machine learning algorithms;
classification metrics

1. Introduction

Tomato (Solanum Lycopersicum L.) fruit, which belongs to the nightshade family, has
health benefits and it can be used in the food industry. The tomato can be consumed as
a fruit drink, fruit salad, condiment for sauces, soup, and different dishes. Tomatoes are
rich in beta-carotene (lycopene), which is beneficial due to its free radical scavenging effect,
and it is useful for cell growth and activity. Beta-carotene and gamma-carotene affect the
activity of provitamin-A in tomatoes [1]. Because of their high consumption, fresh fruit and
tomato-based products make up an important part of the total dietary intake of lycopene [2].
It may decrease of risk of cardiovascular diseases, chronic kidney disease, stomach, lung, or
prostate cancer [3]. Additionally, tomato is a source of vitamin C, vitamin B, and minerals
(calcium, potassium, phosphorous, magnesium, manganese, zinc, and sodium) [4]. Tomato
crops are intensively cultivated. The life cycle and yield losses of a tomato can be affected by
environmental conditions, e.g., drought and salinity stresses [5]. Tomato crops can also be
infested with insect pests [6]. Tomato is a climacteric fruit. Postharvest ripening of the fruit
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initiated by ethylene biosynthesis takes place [7]. In the case of perishables, postharvest
losses can occur. For this reason, tomato is a highly sensitive food commodity against
external loads during the ripening stage. The storage life directly depends on the handling
of fresh tomatoes [1,8]. Furthermore, the tomato may be susceptible to postharvest diseases,
including fungal infection [9]. The rapid postharvest ripening and softening usually cause
susceptibility of the fruit to infection by pathogens, among others, Alternaria alternate [10].
Fruit suffering from postharvest diseases may require the induction of disease resistance,
e.g., by yeast mannan treatment [11,12] or the application of the antagonist yeast as a
strategy to control diseases caused by fungal pathogens, e.g., Botrytis cinerea [13]. The
other strategy to control fruit decay may be the induction of disease resistance by bio-
based compounds, e.g., the application of mitogen-activated protein kinase regulating the
resistance to B. cinerea [14].

The yeast endophytes can be distributed locally or systemically in a variety of plants
where they are protected from abiotic and biotic stress [15]. Endophytic yeast is ecologi-
cally adaptable to host plants and is also robust to plant defense responses [16,17]. They
synthesize physiologically active substances such as vitamins and auxins, and then sup-
ply them to the plant, increase the efficiency of photosynthesis, and improve enzymatic
processes in plants. They also improve the water regime, induce the activity of other soil
microorganisms, and act as antagonists of phytopathogenic microorganisms, increasing the
protective functions of plants [18].

Finding alternative and safe approaches for managing agricultural production sys-
tems and controlling plant diseases and mycotoxin contamination that do not rely on the
use of synthetic fertilizers and chemical pesticides has thus become an important target
for consumers, legislators, and agriculture as a whole. As an integral part of the agroe-
cosystem, yeasts are an attractive option for plant production and protection applications
because they are versatile in their action, can be grown in cheap media, and often exhibit
minor or no biosafety concerns [19]. Although yeasts exhibit numerous, highly beneficial
properties for agricultural production, only a few yeast-based products for agricultural ap-
plications have reached the market and have been successfully implemented on a wide scale.
Relatively few yeast-based products for plant protection have reached advanced develop-
mental stages and been suggested as commercial products for postharvest applications
(e.g., Candida oleophila as Aspire and Nexy, C. sake as Candifruit, Metschnikowia fructi-
cola as Shemer/NOLI, Aureobasidium pullulans as BoniProtect and BlossomProtect, or
Cryptococcus albidus as YieldPlus) [20–23]. The current article covers AI aspects related
to the successful application of beneficial yeasts in agricultural plant production systems
with tomatoes.

In this paper, three yeast strains, YE1, YP6, and YBS14, were isolated from differ-
ent plant tissues. YE1 and YP6 were isolated from the seeds of Triticum aestivum L.,
while YBS14 was isolated from the roots of Helichrysum italicum L., which was used
because of its importance as a medicinal plant and limited habitat. Partial sequence
analysis of the ITS5-5.8-ITS4 region of nuclear ribosomal DNA with universal primers
identified YE1 as Zygosaccharomyces bailii [24], YP6 as Pichia fermentans, and YBS14 as
Saccharomyces cerevisiae. The nucleotide sequences attained in this study were deposited in
the GenBank with accession numbers OL904963, MZ798453, and MZ798454, respectively.
Z. bailii YE1 was able to colonize endophyticaly tobacco plants with a high frequency of
colonization. YE1 was reported to exhibit PGPR activities including indole-3 acetic acid pro-
duction from tryptophan, and simulated the development and growth of the tobacco plants.
Their antimicrobial activities against various plant pathogenic fungi (Rhizoctonia solani,
Alternaria solani, and Fusarium solani) were detected. The inhibition of the growth of all of
the tested pathogens by Z. bailii YE1 may be due to the production of siderophores on the
Chrome Azurol S (CAS) agar based on their affinity for ferric iron.

Fluorescence spectroscopy is widely used in the food industry for quantitative analysis.
It is sensitive and specific enough to detect even small concentrations of compounds [25,26].
It can, for example, detect changes in the structures of proteins, carbohydrates, and lipids
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in oils. This is useful for verifying the authenticity of food products [27]. Advances in
fiber optic technology offer exceptional opportunities to develop a wide range of highly
sensitive fiber optic sensors in many new areas of applications. The fiber-optic components
are successfully adapted to compilations with elements of micro-optics such as lenses,
mirrors, prisms, and gratings [28,29]. Fluorescence spectroscopy in the agricultural sciences
is applied to the analysis of tomatoes [30] and cereals [31]. Their qualification by means of
this technique is performed by grouping objects with similar characteristics for establishing
methods related to their classification.

The agricultural industry has to handle various issues, such as the depletion of natural
resources, the rapid increase in the need for food, climate changes, securing production
continuity, and health anxieties. The appropriate solution for these critical challenges
is to make use of computer-aided systems. The increase in studies involving remote
sensing applications and unmanned aerial vehicles has provided new studies in different
fields [32,33]. In this context, one of the areas where the most applications were developed
has been agriculture. Such applications include remote sensing as well as image processing,
artificial intelligence, and computer vision [34]. The success of approaches such as artificial-
intelligence-based expert systems, machine learning, and deep learning depends on the
quality of the remotely obtained images. In this sense, different methods can be used to
increase the quality of the image [35].

This study presents an application of machine learning (ML) methods using fluores-
cent spectroscopic data to distinguish between uninoculated and yeast-inoculated tomato
samples. As traditional classification techniques are both cumbersome and difficult, com-
puter vision and artificial intelligence methods, which offer easy, more accurate, and fast
solutions in classification studies of agricultural products, have recently been frequently
preferred. Among the artificial intelligence methods, ML includes a large number of algo-
rithms with a robust discrimination ability if strong features are extracted from agricultural
products. ML is a method that aims to improve itself by using experience and data [36].
Although it occupies a common area with artificial intelligence, it is also a standalone
subject. ML algorithms predict future data using previous data on a subject for which they
are not specifically programmed. The previous data mentioned here are called training
data in the literature. The accuracy of the model created using training data is examined
using test data [37].

When previous studies are examined, it can be seen that ML algorithms are used to
classify many different agricultural products besides tomatoes. Kumar et al. [38] proposed
a machine-vision-based tomato grading and sorting system using a support vector ma-
chine (SVM) classifier. The system was constructed on an embedded standalone system.
The performance of the proposed system was compared in terms of various performance
metrics. It was reported that the system has good results and creates suggestions such
as Non-Tomato/Tomato and Good/Defective. Iraji [39] proposed soft computing and
machine vision methods for the determination of tomato quality in 2019. In that study, a
multilayer sub-adaptive neuro-fuzzy inference system architecture was applied to deter-
mine quality. Some neural networks, extreme learning machines, and regression model
combinations were investigated. The deep-stack sparse autoencoders method has been
reported to be more successful. The achieved accuracy was specified as 95.5%. Li, Sun, Liu,
and Shi [11] proposed a machine-vision-based tomato volume measurement method. First,
the geometric feature parameters of the tomatoes were collected from the tomato images. It
was reported that the average error of volume prediction was about 8.22%. Ropelewska
and Piecko [40] investigated various ML methods to discriminate tomato seeds. The seed
images were converted into various color spaces and their color channels were used as
features. Although for various seed types, higher accuracy rates were achieved up to
99.75%, the best result in an average accuracy of 97% was achieved with the multilayer
perceptron. Slavova et al. [41] investigated various ML methods to determine the breeding
method effects on different potato types by using spectroscopic data. ML methods such as
Hoeffding Tree, Naive Bayes, SMO, Multi-Class Classifier, IBk, and PART were compared
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using performance metrics such as precision, F-measure, MCC, and PCR-ROC Area. It was
reported that the best result of 95% was achieved by SMO. Koklu et al. [42] classified pump-
kin seeds using ML methods. To create a dataset, 2500 pumpkin seeds were photographed.
The classification was conducted using logistic regression, multilayer perceptron, SVM,
random forest, and k-nearest neighbor. The best ML method in terms of accuracy rate was
SVM with 88.64%. Ropelewska et al. [43] investigated ML methods to classify various onion
samples’ fluorescence spectroscopic data. Performance metrics such as confusion matrices,
average accuracies, F-measure, precision, ROC, and PRC area were used for comparisons.
The multilayer perceptron, Naive Bayes, LMT, and JRip classifiers were employed in the
classification stage. It was stated that the best average accuracy was determined as being
90% with the LMT classifier. Yasmin et al. [44] proposed a one-class classification method
for tomato seeds. They created an imaging system containing a conveyor, a black box with
a camera, and self-lighting. The samples were lined up with four rows on the conveyor
manually. They were photographed in RGB color space. The final attributes obtained from
the image color channels were classified by using the multivariate data analysis method
of DD-SIMCA. It was reported that the performance of this method was 97.7% in terms
of accuracy.

This study aims to classify the investigated tomatoes for different purposes using ML
algorithms. Unlike previous studies, this study will present an ML-based application to
discriminate between uninoculated and yeast-inoculated tomato samples. The types of
tomatoes used were ‘local dwarf’, ‘Ideal’, and ‘Picador’. They were examined spectrally
using fluorescence spectroscopy and the obtained spectra were analyzed with six different
ML algorithms, namely Hoeffding Tree, PART, IBk, Filtered Classifier, Logistic, and Bayes
Net. The results of the analysis are expected to demonstrate the strong ability of the
different ML methods to discriminate between uninoculated and yeast-inoculated tomato
cultivars. The contributions of this study can be summarized as follows.

• Various ML methods are used for the analysis of the spectroscopic data.
• Computer aided systems are used to distinguish uninoculated and yeast-inoculated

tomato samples.
• Different ML methods distinguish between uninoculated and yeast-inoculated tomato

varieties with a high accuracy.

This paper is organized as follows. After the introduction, Section 2 explains in detail
the tomato species used, growing conditions, information on the inoculation of tomatoes,
fluorescence spectroscopy data obtained from tomatoes, and discriminant analysis. Section 3
interprets the results obtained from the different ML methods as a result of the classification
of each tomato species. Finally, Section 4 evaluates and concludes the study.

2. Materials and Methods
2.1. Material

The plant material utilized in this work consisted of three tomato accessions, namely
COE0158-local dwarf tomato; COE0159-determinate cultivar ‘Pikador’; COE0160-indeterminate
cultivar ‘Ideal’ reserved at the genebank of the Institute of Plant Genetics Resources, Sadovo.
The COE0158-local dwarf tomato is compact, with the plant growing up to 40–50 cm tall, potato-
type leaves, bright red fruits of a flat round shape, with the weight of the tomatoes grown being
100–120 g. The determinate cultivar ‘Pikador’ is a high productive cultivar producing fruit with
intensely red flesh and is great for preserves. They produce nice, slightly elongated tomatoes
that resemble pears in shape, are firm and hard, and weigh 50–60 g. They develop in clusters
and thanks to their resistance to breaking, the crops are always of high quality and resistant to
mold. The indeterminate cultivar ‘Ideal’ is a medium-early tomato cultivar with large fruits
130–180 g, flat-round to round, slightly ridged, multi-chambered, orange-red in color, with a
pleasant taste. The sample images representing the ‘local dwarf’, ‘Picador’, and ‘Ideal’ types
used in this study are shown in Figure 1.
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Figure 1. Sample images representing the different types of tomatoes used in this paper: (a) ‘local
dwarf’, (b) ‘Pikador’, and (c) ‘Ideal’.

The seeds were sown in seedling trays filled with a peat-pearlitic substrate and were
placed at a temperature of 25–28 ◦C for germination. Tomato seedlings were planted after
they were 15–25 cm tall and had 3–5 true leaves, assuming all danger of frost had passed
(May 15). Indeterminate COE0160 were planted at a distance between rows of 75–80 cm
and 35–40 cm between plants in the row. The stems were attached to a supporting structure.
Determinate tomatoes COE0159 and dwarf COE0158 were planted 25–30 cm between the
tomato plants, and space rows 60–90 cm apart. The samples were grown at the Institute of
Plant Genetics Resources, Sadovo. The field experiment is based on the block method with
three replications, ten (10) plants in repetition

2.2. Isolation and Molecular Identification of Yeast

The yeast was isolated from surface-sterilized roots and wheat seeds grown in the Plov-
div Agricultural University training experiment field, spread over an area of 185 hectares
around the city of Plovdiv, Southern Bulgaria. Molecular identification of the isolated yeast
was reported by [24].

2.3. Colonization on the Development of Tomato in Field Experiments

The experimental design was set up to monitor and evaluate the effect of the yeast
strain on the growth of tomatoes. These tomato plants were inoculated individually
with soil or leaf treatment, and the uninoculated plants were used as the controls. Soil
application was done by pipetting close to the root and leaf spraying was done to all leaves
with a suspension at 1 × 104 yeast cell concentration for each strain separately. The yeast
suspension was not applied to the control plants. An additional second application was
made for tomato plants on the 14th day after the first inoculation. NIR measurements were
made to monitor the effect of yeast colonization on tomatoes.

2.4. Fluorescence Spectroscopy

The optical features of tomato fruits were obtained by their energy structure, which
contained both the free electronic energy levels and the occupied ones, as well as the
energy levels of the atomic oscillations of the molecules or the crystal lattice. The possible
transitions between these energy levels as a function of the energy of the photons were
specific to the biological object. As a result, the spectrum and optical properties were
unique to it. The fruit contained particles smaller than the wavelength of visible light.
Particles in turbid environments (e.g., hems) play the role of independent light sources,
emitting inconsistently and visibly fluorescence samples.

The study was carried out with a fiber optic spectrometer that allowed for the
generation of fluorescent emission signals from 200 nm to 1200 nm. The device was
used to perform fluorescence spectroscopy of solid samples in a photosensitive area of
1.9968 × 1.9968 mm. The experimental setup consisted of a laser diode with an emission
wavelength of 285 nm and optical power of 16 mW, DC. In addition, the portable spectrom-
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eter model AvaSpec-ULS2048CL-EVO was used. AvaSpec-ULS2048CL-EVO is a portable
spectrometer manufactured by Avantes-Apeldoorn(Apeldoorn, The Netherlands). Using
CMOS instead of conventional CCD technology, this spectrometer owes its key advantage
over others with a similar configuration to the dominant position of the CMOS detector
in its construction. Technologies such as CMOS have evolved and become a suitable al-
ternative. AvaSpec-ULS2048CL-EVO offers the latest technology providing a high signal
sensitivity. The spectrometer is combined with the latest electronics in the industry AS-7010.
By purchasing AvaSpec-ULS0248CL-EVO, a universal device was purchased, including
USB3.0 communication with 10 times higher speed compared with USB2 and a second com-
munication port that offers a Gigabit Ethernet for network integration and long-distance
communication capability. In addition to high-speed communication options, the spectrom-
eter also comes with a fast microprocessor and 50 times more memory capacity, which will
help store a large batch of spectra. The tomato samples were placed on a duralumin stand,
reducing aberrations and allowing for the emission of fluorescent signals of a better quality
(Figure 2).
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Figure 2. The fluorescence spectroscopy setup for the tomato sample measurements.

The resolution of the spectrometer was 0.09 nm. The useful fluorescence signal was
measured in a direction 180◦ below the excitation radiation. The laser diode used had a
relatively wide spectral radiation width (30–40 nm) and the angular distribution of the
radiation was +/− 30◦. The sensitivity of the spectrometer was in the range of 200 nm
to 1200 nm and the resolution was δλ = 5 nm. Using the spectral installation based on
fluorescent signals, the measurements of the emission spectrum and the spectrum of the
excitation source were possible. The photodetector of the CMOS type, model S9132, was
used for the specific circuit. Model S9132 was chosen because of the possibility of detecting
emission radiation from a tomato sample with a very low loss of water content. The laser
radiation was removed from the source and fell on the sample. After the sample fluoresces,
the emission signal fell on a U-shaped optical fiber with a numerical aperture of 0.22, a
core diameter of 200 µm, and a step-index of the refractive index. In the spectrometer,
the light signal was converted to electrical-digital via a USB 2.0 wire, then downloaded
to a computer with AvaSoft8 software, and finally exported to Excel. The discriminative
models were built based on the fluorescence data to distinguish the uninoculated and
yeast-inoculated tomato samples. The schematic approach to data acquisition and analysis
is shown in Figure 3.
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2.5. Discriminant Analysis

The statistical analysis of the fluorescence spectroscopic data was carried out using
the WEKA application (Machine Learning Group, University of Waikato, Hamilton, New
Zealand) [45–47]. The analysis was performed for ‘local dwarf’, ‘Ideal’, and ‘Picador’
tomatoes. In the case of each type of tomato, the discrimination analysis was carried
out to distinguish the control and yeast-inoculated tomato samples. In the first step of
the analysis, attribute selection was performed. The Best First with the CFS (correlation-
based feature selection) algorithm was used. The chosen spectroscopic data at selected
wavelengths [nm] characterized by the highest discriminative power were used to build
the model for the discrimination of the control and inoculated tomato classes. The models
were developed using a 10-fold cross-validation mode and ML algorithms. One algorithm
from the groups of Trees, Rules, Meta, Lazy, Functions, and Bayes, providing the most
satisfactory results, was chosen. The following algorithms were selected as the most
successful: Hoeffding Tree, PART, Filtered Classifier, Logistic, and Bayes Net, respectively.
In the case of each model, the confusion matrices, average accuracy, and the values of
true positive rate (TP Rate), precision, receiver operating characteristic area (ROC area),
precision-recall area (PRC Area), F-measure, and Matthews correlation coefficient (MCC)
were determined [48,49].

3. Results and Discussion

The models developed based on fluorescence spectroscopic data using ML algorithms
were used to distinguish the uninoculated (control) and yeast-inoculated tomato samples.
The discrimination analysis was performed separately for each of the three types of tomato.
In the case of the local dwarf tomato (Table 1), the average accuracy for the discrimination
of the control and inoculated tomato reached 100% for the models developed using the
Hoeffding Tree from the group of Trees and Bayes Net from the group of Bayes. Both the
uninoculated and yeast-inoculated tomatoes were completely distinguished from each
other and there was no mixing of cases between classes. In addition, other performance
measures showed complete differentiation between yeast-inoculated and uninoculated
tomatoes. The values of the TP rate, precision, ROC area, PRC area, F-measure, and MCC
were equal to 1.000. The remaining algorithms also produced very satisfactory results. The
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average accuracy for models built using PART (group of Rules), Filtered Classifier (group
of Meta), IBk (group of Lazy), and Logistic (group of Functions) reached 95%. In the case of
each algorithm, the control samples were correctly discriminated 100% of the time, whereas
the inoculated samples were discriminated with an accuracy of 90%, and the remaining
10% of the tomato cases belonging to the actual class ‘inoculated’ were incorrectly included
in the predicted class ‘control’. The obtained confusion matrices influenced lower values of
the other discrimination performance metrics. The TP rate was equal to 1.000 for the control
and 0.900 for inoculated samples in the case of each algorithm. The control and yeast-
inoculated tomatoes were characterized by precision equal to 0.909 the 1.000, respectively.
The ROC area for both the control and inoculated tomato samples ranged from 0.990 for IBk
to 1.000 for Logistic. In addition, PRC area for both classes reached 1.000 for the Logistic
algorithm. The lowest value of PRC area was 0.909 for the control tomatoes for the PART
and Filtered Classifier algorithms. In the case of PART, Filtered Classifier, IBk, and Logistic,
the value of the F-measure was equal to 0.952 for the control samples and 0.947 for the
inoculated samples, and MCC reached 0.905 for both tomato samples.

Table 1. The discrimination of the control and yeast-inoculated local dwarf tomato (COE0158).

Algorithm Predicted Class (%)
Actual Class

Average
Accuracy (%) TP Rate Precision ROC

Area
PRC
Area F-Measure MCCControl Inoculated

trees.HoeffdingTree 100 0 control
100

1.000 1.000 1.000 1.000 1.000 1.000
0 100 inoculated 1.000 1.000 1.000 1.000 1.000 1.000

rules.PART
100 0 control

95
1.000 0.909 0.950 0.909 0.952 0.905

10 90 inoculated 0.900 1.000 0.950 0.950 0.947 0.905

meta.FilteredClassifier
100 0 control

95
1.000 0.909 0.950 0.909 0.952 0.905

10 90 inoculated 0.900 1.000 0.950 0.950 0.947 0.905

lazy.IBk 100 0 control
95

1.000 0.909 0.990 0.982 0.952 0.905
10 90 inoculated 0.900 1.000 0.990 0.983 0.947 0.905

functions.Logistic 100 0 control
95

1.000 0.909 1.000 1.000 0.952 0.905
10 90 inoculated 0.900 1.000 1.000 1.000 0.947 0.905

bayes.BayesNet 100 0 control
100

1.000 1.000 1.000 1.000 1.000 1.000
0 100 inoculated 1.000 1.000 1.000 1.000 1.000 1.000

TP rate—true positive rate; ROC area—receiver operating characteristic area; PRC area—precision-recall area;
MCC—Matthews correlation coefficient.

The results of the discrimination of the yeast-inoculated and uninoculated tomato
‘Pikador’ are presented in Table 2. In the case of this cultivar, an average accuracy of 100%
was also obtained. The inoculated and uninoculated (control) classes were completely
correctly discriminated in the case of the models built using the Hoeffding Tree, PART, and
IBk algorithms. The accuracies were equal to 100% and the values of other metrics, i.e., TP
rate, precision, ROC area, PRC area, F-measure, and MCC reached 1.000. In the case of other
algorithms (Filtered Classifier, Logistic, and Bayes Net), the discrimination performance
metrics were also high. An average accuracy of 95% was determined. The control samples
were distinguished with a higher accuracy. The accuracy for the control tomato class was
equal to 100% and for the inoculated class it was 90%. For the Filtered Classifier, Logistic,
and Bayes Net algorithms, the TP rate (1.000) and F-measure (0.952) were also higher for
the control than for the inoculated samples (TP rate: 0.900, F-Measure: 0.947). However,
the class ‘inoculated’ was characterized by higher precision and PRC area values.

In the case of the discrimination of the control and yeast-inoculated tomato ‘Ideal’,
an average accuracy of 100% was not observed (Table 3). Two classes were distinguished
with an average accuracy of up to 95% for the model built based on fluorescence spec-
troscopic data using the KStar algorithm from the group of Lazy. For this model, the
control tomatoes and inoculated tomatoes were discriminated with accuracies of 100%
and 90%, respectively. The KStar algorithm produced also the highest values for the
TP rate (control: 1.000, inoculated: 0.900), precision (control: 0.909, inoculated: 1.000),
F-measure (control: 0.952, inoculated: 0.947), and MCC (control: 0.905, inoculated: 0.905).
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A slightly lower average accuracy of 90% (an accuracy of 90% for both control and inocu-
lated classes) was determined in the case of the Filtered Classifier and Logistic. The lowest
average accuracy of 80% (90% for control tomatoes and 70% for inoculated tomatoes) was
found for the model developed using the PART algorithm. In addition, the values for
the TP Rate (control: 0.900, inoculated: 0.700), precision (control: 0.750, inoculated: 0.875),
ROC area (control: 0.830, inoculated: 0.830), PRC area (control: 0.775, inoculated: 0.813),
F-measure (control: 0.818, inoculated: 0.778), and MCC (control: 0.612, inoculated: 0.612)
were the lowest for the PART algorithm.

Table 2. The discrimination performance metrics of the control and yeast-inoculated tomato ‘Pikador’
(COE0159).

Algorithm Predicted Class (%) Actual
Class

Average
Accuracy (%)

TP
Rate Precision ROC

Area
PRC
Area F-Measure MCCControl Inoculated

trees.HoeffdingTree 100 0 control
100

1.000 1.000 1.000 1.000 1.000 1.000
0 100 inoculated 1.000 1.000 1.000 1.000 1.000 1.000

rules.PART
100 0 control

100
1.000 1.000 1.000 1.000 1.000 1.000

0 100 inoculated 1.000 1.000 1.000 1.000 1.000 1.000

meta.FilteredClassifier
100 0 control

95
1.000 0.909 0.950 0.909 0.952 0.905

10 90 inoculated 0.900 1.000 0.950 0.950 0.947 0.905

lazy.IBk 100 0 control
100

1.000 1.000 1.000 1.000 1.000 1.000
0 100 inoculated 1.000 1.000 1.000 1.000 1.000 1.000

functions.Logistic 100 0 control
95

1.000 0.909 0.950 0.909 0.952 0.905
10 90 inoculated 0.900 1.000 1.000 1.000 0.947 0.905

bayes.BayesNet 100 0 control
95

1.000 0.909 1.000 1.000 0.952 0.905
10 90 inoculated 0.900 1.000 1.000 1.000 0.947 0.905

TP rate—true positive rate; ROC area—receiver operating characteristic area; PRC area—precision-recall area;
MCC—Matthews correlation coefficient.

Table 3. The discrimination performance metrics of the control and yeast-inoculated tomato ‘Ideal’
(COE0160).

Algorithm Predicted Class (%) Actual
Class

Average
Accuracy (%)

TP
Rate Precision ROC

Area
PRC
Area F-Measure MCCControl Inoculated

trees.HoeffdingTree 90 10 control
85

0.900 0.818 0.880 0.826 0.857 0.704
20 80 inoculated 0.800 0.889 0.880 0.923 0.842 0.704

rules.PART
90 10 control

80
0.900 0.750 0.830 0.775 0.818 0.612

30 70 inoculated 0.700 0.875 0.830 0.813 0.778 0.612

meta.FilteredClassifier
90 10 control

90
0.900 0.900 0.960 0.967 0.900 0.800

10 90 inoculated 0.900 0.900 0.960 0.962 0.900 0.800

lazy.KStar 100 0 control
95

1.000 0.909 0.935 0.882 0.952 0.905
10 90 inoculated 0.900 1.000 0.900 0.950 0.947 0.905

functions.Logistic 90 10 control
90

0.900 0.900 0.960 0.967 0.900 0.800
10 90 inoculated 0.900 0.900 0.960 0.962 0.900 0.800

bayes.BayesNet 90 10 control
85

0.900 0.818 0.890 0.834 0.857 0.704
20 80 inoculated 0.800 0.889 0.890 0.932 0.842 0.704

TP rate—true positive rate; ROC area—receiver operating characteristic area; PRC area—precision-recall area;
MCC—Matthews correlation coefficient.

The obtained results reveal that selected fluorescence spectroscopy data combined
with ML allowed for the discrimination of yeast-inoculated and uninoculated tomatoes
with correctness reaching 100%. However, the correctness depended on the type of tomato.
In the case of two (‘local dwarf’ and ‘Pikador’) of the three types examined, the average
accuracy reached 100%, while the control and yeast-inoculated tomato samples belonging to
the third type (‘Ideal’) were discriminated with correctness reaching 95%. The usefulness of
the approach involving fluorescence spectroscopy and ML for the discrimination of samples
was confirmed in previous studies performed, e.g., by Slavova, Ropelewska, Sabanci, Aslan,
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and Nacheva [41], who proved that selected fluorescence spectroscopic data can be useful
for the discrimination of the potato lines and varieties with the correctness of up to 100%
and precision, F-measure, ROC area, PRC area, and MCC of 1.000. Ropelewska, Slavova,
Sabanci, Aslan, Cai, and Genova [43] successively discriminated different onion samples
using models built based on selected fluorescence spectroscopic data and ML algorithms.
The onion cultivated under normal watering and drought were distinguished with an
average accuracy reaching 100%.

4. Conclusions

This work discussed how effective ML techniques were for classifying yeast-inoculated
and uninoculated tomato cultivars based on fluorescent spectroscopic data. Three different
tomato cultivars, ‘local dwarf’, ‘Pikador’, and ‘Ideal’, were used. ML algorithms were
applied to perform the discrimination analysis. Tomato samples were distinguished as
yeast-inoculated and uninoculated with different classifiers. Based on the classification
results obtained using ML algorithms, the performance metric values for each ML algorithm
were compared. The results indicated that ML methods provided a successful classification
for uninoculated and yeast-inoculated tomato sample discrimination. Of the six different
ML algorithms studied, HoeffdingTree and BayesNet distinguished ‘local dwarf’ tomato
samples from yeast-inoculated and uninoculated, with the highest average accuracy equal
to 100%. The ‘Picador’ tomato samples were distinguished by the HoeffdingTree, PART
and IBk classifiers with the highest accuracy. ‘Ideal’ tomato samples were distinguished by
the KStar classifier with the highest accuracy of 95%. Considering the results attained, it
seems that combining fluorescence spectroscopy and discriminant analysis using various
classifiers can be a promising differentiation procedure to distinguish different tomato
samples. Moreover, the developed procedures can be applied to a larger number of cultivars.
In future studies, deep-learning-based long short-term memory (LSTM) networks can be
used to distinguish tomato samples.

Author Contributions: Conceptualization, E.R., V.S., K.S., M.F.A., V.M. and M.P.; methodology,
E.R., V.S., K.S. and M.F.A.; software, E.R., K.S. and M.F.A.; validation, E.R., K.S. and M.F.A.; formal
analysis, E.R., V.S., V.M. and M.P.; investigation, E.R., K.S. and M.F.A.; resources, V.S., V.M. and
M.P.; data curation, E.R., K.S. and M.F.A.; writing—original draft preparation, E.R., V.S., K.S. and
M.F.A.; writing—review and editing, E.R., V.S., K.S. and M.F.A.; visualization, E.R., V.S., K.S., M.F.A.,
V.M. and M.P.; supervision, E.R., K.S. and M.F.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Osae, R.; Apaliya, M.T.; Alolga, R.N.; Kwaw, E.; Otu, P.N.Y.; Akaba, S. Influence of shea butter, bee wax and cassava starch coatings

on enzyme inactivation, antioxidant properties, phenolic compounds and quality retention of tomato (Solanum lycopersicum)
fruits. Appl. Food Res. 2022, 2, 100041. [CrossRef]

2. Saini, R.K.; Moon, S.H.; Keum, Y.-S. An updated review on use of tomato pomace and crustacean processing waste to recover
commercially vital carotenoids. Food Res. Int. 2018, 108, 516–529. [CrossRef]

3. Vallecilla-Yepez, L.; Ciftci, O.N. Increasing cis-lycopene content of the oleoresin from tomato processing byproducts using
supercritical carbon dioxide. LWT 2018, 95, 354–360. [CrossRef]

4. Vigneshwaran, G.; More, P.R.; Arya, S.S. Non-thermal hydrodynamic cavitation processing of tomato juice for physicochemical,
bioactive, and enzyme stability: Effect of process conditions, kinetics, and shelf-life extension. Curr. Res. Food Sci. 2022, 5, 313–324.
[CrossRef]

http://doi.org/10.1016/j.afres.2022.100041
http://doi.org/10.1016/j.foodres.2018.04.003
http://doi.org/10.1016/j.lwt.2018.04.065
http://doi.org/10.1016/j.crfs.2022.01.025


Agriculture 2022, 12, 1887 11 of 12

5. Akbudak, M.A.; Filiz, E.; Çetin, D. Genome-wide identification and characterization of high-affinity nitrate transporter 2 (NRT2)
gene family in tomato (Solanum lycopersicum) and their transcriptional responses to drought and salinity stresses. J. Plant Physiol.
2022, 272, 153684. [CrossRef] [PubMed]

6. El-Sitiny, M.F.; Habeba, M.; El-Shehawi, A.M.; Elseehy, M.M.; El-Tahan, A.M.; El-Saadony, M.T.; Selem, G.S. Biochemical and
molecular diagnosis of different tomato cultivars susceptible and resistant to Tuta absoluta (meyrick) infestation. Saudi J. Biol. Sci.
2022, 29, 2904–2910. [CrossRef]

7. Guo, J.-E. Histone deacetylase gene SlHDT1 regulates tomato fruit ripening by affecting carotenoid accumulation and ethylene
biosynthesis. Plant Sci. 2022, 318, 111235. [CrossRef]

8. Nassiri, S.M.; Tahavoor, A.; Jafari, A. Fuzzy logic classification of mature tomatoes based on physical properties fusion. Inf.
Process. Agric. 2021, 9, 547–555. [CrossRef]

9. Morales-Rabanales, Q.N.; Coyotl-Pérez, W.A.; Rubio-Rosas, E.; Cortes-Ramírez, G.S.; Ramírez, J.F.S.; Villa-Ruano, N. Antifungal
properties of hybrid films containing the essential oil of Schinus molle: Protective effect against postharvest rot of tomato. Food
Control 2022, 134, 108766. [CrossRef]

10. Li, Q.; Xie, F.; Zhao, Y.; Cao, J. Inhibitory effect of postharvest yeast mannan treatment on Alternaria rot of tomato fruit involving
the enhancement of hemicellulose polysaccharides and antioxidant metabolism. Sci. Hortic. 2021, 277, 109798. [CrossRef]

11. Li, H.; Sun, Q.; Liu, S.; Liu, L.; Shi, Y. A Novel Tomato Volume Measurement Method based on Machine Vision. Teh.
Vjesn. 2021, 28, 1674–1680. [CrossRef]

12. Xie, F.; Yuan, S.; Pan, H.; Wang, R.; Cao, J.; Jiang, W. Effect of yeast mannan treatments on ripening progress and modification of
cell wall polysaccharides in tomato fruit. Food Chem. 2017, 218, 509–517. [CrossRef] [PubMed]

13. Zhao, S.; Guo, Y.; Wang, Q.; Luo, H.; He, C.; An, B. Expression of flagellin at yeast surface increases biocontrol efficiency of yeast
cells against postharvest disease of tomato caused by Botrytis cinerea. Postharvest Biol. Technol. 2020, 162, 111112. [CrossRef]

14. Guo, J.; Sun, K.; Zhang, Y.; Hu, K.; Zhao, X.; Liu, H.; Wu, S.; Hu, Y.; Zhang, Y.; Wang, Y. SlMAPK3, a key mitogen-activated protein
kinase, regulates the resistance of cherry tomato fruit to Botrytis cinerea induced by yeast cell wall and β-glucan. Postharvest Biol.
Technol. 2021, 171, 111350. [CrossRef]

15. Castanheira, M.; Deshpande, L.M.; Davis, A.P.; Rhomberg, P.R.; Pfaller, M.A. Monitoring Antifungal Resistance in a Global
Collection of Invasive Yeasts and Molds: Application of CLSI Epidemiological Cutoff Values and Whole-Genome Sequencing
Analysis for Detection of Azole Resistance in Candida Albicans. Antimicrob. Agents Chemother. 2017, 61, e00906-17. [CrossRef]

16. Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol.
Biotechnol. 2019, 35, 154. [CrossRef]

17. Ling, L.; Tu, Y.; Ma, W.; Feng, S.; Yang, C.; Zhao, Y.; Wang, N.; Li, Z.; Lu, L.; Zhang, J. A potentially important resource: Endophytic
yeasts. World J. Microbiol. Biotechnol. 2020, 36, 110. [CrossRef]

18. Hassan, S.E.-D. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium
polium L. J. Adv. Res. 2017, 8, 687–695. [CrossRef]

19. Buzzini, P.; Branda, E.; Goretti, M.; Turchetti, B. Psychrophilic yeasts from worldwide glacial habitats: Diversity, adaptation
strategies and biotechnological potential. FEMS Microbiol. Ecol. 2012, 82, 217–241. [CrossRef]

20. Sundh, I.; Melin, P. Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain. Antonie Van
Leeuwenhoek 2010, 99, 113–119. [CrossRef]

21. Van Lenteren, J.C.; Bolckmans, K.; Köhl, J.; Ravensberg, W.J.; Urbaneja, A. Biological control using invertebrates and microorgan-
isms: Plenty of new opportunities. BioControl 2018, 63, 39–59. [CrossRef]

22. Spadaro, D.; Droby, S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the
mechanisms of action of yeast antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [CrossRef]

23. Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, M.H. The science, development, and commercialization of postharvest
biocontrol products. Postharvest Biol. Technol. 2016, 122, 22–29. [CrossRef]

24. Petkova, M.; Petrova, S.; Spasova-Apostolova, V.; Naydenov, M. Tobacco Plant Growth-Promoting and Antifungal Activities of
Three Endophytic Yeast Strains. Plants 2022, 11, 751. [CrossRef] [PubMed]

25. Valeur, B.; Berberan-Santos, M.N. Molecular Fluorescence: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012.
26. Qin, J.; Lu, R. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse

reflectance imaging technique. Postharvest Biol. Technol. 2008, 49, 355–365. [CrossRef]
27. Bachmann, L.; Zezell, D.M.; Ribeiro, A.D.C.; Gomes, L.; Ito, A.S. Fluorescence Spectroscopy of Biological Tissues—A Review.

Appl. Spectrosc. Rev. 2006, 41, 575–590. [CrossRef]
28. Mitschke, F.; Mitschke, F. Fiber Optics; Springer: Berlin/Heidelberg, Germany, 2016.
29. Dakin, J.P.; Brown, R. Handbook of Optoelectronics: Concepts, Devices, and Techniques (Volume One); CRC Press: Boca Raton, FL, USA, 2017.
30. Hoffmann, A.M.; Noga, G.; Hunsche, M. Fluorescence indices for monitoring the ripening of tomatoes in pre- and postharvest

phases. Sci. Hortic. 2015, 191, 74–81. [CrossRef]
31. Karoui, R.; Blecker, C. Fluorescence Spectroscopy Measurement for Quality Assessment of Food Systems—A Review. Food

Bioprocess Technol. 2011, 4, 364–386. [CrossRef]
32. Karim, S.; Zhang, Y.; Laghari, A.A.; Asif, M.R. Image processing based proposed drone for detecting and controlling street crimes.

In Proceedings of the 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, 27–30
October 2017; pp. 1725–1730.

http://doi.org/10.1016/j.jplph.2022.153684
http://www.ncbi.nlm.nih.gov/pubmed/35349936
http://doi.org/10.1016/j.sjbs.2022.01.024
http://doi.org/10.1016/j.plantsci.2022.111235
http://doi.org/10.1016/j.inpa.2021.09.001
http://doi.org/10.1016/j.foodcont.2021.108766
http://doi.org/10.1016/j.scienta.2020.109798
http://doi.org/10.17559/tv-20210616091307
http://doi.org/10.1016/j.foodchem.2016.09.086
http://www.ncbi.nlm.nih.gov/pubmed/27719943
http://doi.org/10.1016/j.postharvbio.2019.111112
http://doi.org/10.1016/j.postharvbio.2020.111350
http://doi.org/10.1128/AAC.00906-17
http://doi.org/10.1007/s11274-019-2728-4
http://doi.org/10.1007/s11274-020-02889-0
http://doi.org/10.1016/j.jare.2017.09.001
http://doi.org/10.1111/j.1574-6941.2012.01348.x
http://doi.org/10.1007/s10482-010-9528-z
http://doi.org/10.1007/s10526-017-9801-4
http://doi.org/10.1016/j.tifs.2015.11.003
http://doi.org/10.1016/j.postharvbio.2016.04.006
http://doi.org/10.3390/plants11060751
http://www.ncbi.nlm.nih.gov/pubmed/35336632
http://doi.org/10.1016/j.postharvbio.2008.03.010
http://doi.org/10.1080/05704920600929498
http://doi.org/10.1016/j.scienta.2015.05.001
http://doi.org/10.1007/s11947-010-0370-0


Agriculture 2022, 12, 1887 12 of 12

33. Karim, S.; Zhang, Y.; Yin, S.; Laghari, A.A.; Brohi, A.A. Impact of compressed and down-scaled training images on vehicle
detection in remote sensing imagery. Multimed. Tools Appl. 2019, 78, 32565–32583. [CrossRef]

34. Aslan, M.F.; Durdu, A.; Sabanci, K.; Ropelewska, E.; Gültekin, S.S. A Comprehensive Survey of the Recent Studies with UAV for
Precision Agriculture in Open Fields and Greenhouses. Appl. Sci. 2022, 12, 1047. [CrossRef]

35. Laghari, A.A.; He, H.; Shafiq, M.; Khan, A. Assessment of quality of experience (QoE) of image compression in social cloud
computing. Multiagent Grid Syst. 2018, 14, 125–143. [CrossRef]

36. Mitchell, T.M. Machine learning and data mining. Commun. ACM 1999, 42, 30–36. [CrossRef]
37. Koza, J.R.; Bennett, F.H.; Andre, D.; Keane, M.A. Automated Design of Both the Topology and Sizing of Analog Electrical Circuits

Using Genetic Programming. In Artificial Intelligence in Design ’96; Gero, J.S., Sudweeks, F., Eds.; Springer: Dordrecht, The
Netherlands, 1996; pp. 151–170.

38. Kumar, S.D.; Esakkirajan, S.; Bama, S.; Keerthiveena, B. A microcontroller based machine vision approach for tomato grading and
sorting using SVM classifier. Microprocess. Microsyst. 2020, 76, 103090. [CrossRef]

39. Iraji, M.S. Comparison between soft computing methods for tomato quality grading using machine vision. J. Food Meas. Charact.
2019, 13, 1–15. [CrossRef]

40. Ropelewska, E.; Piecko, J. Discrimination of tomato seeds belonging to different cultivars using machine learning. Eur. Food Res.
Technol. 2022, 248, 685–705. [CrossRef]

41. Slavova, V.; Ropelewska, E.; Sabanci, K.; Aslan, M.F.; Nacheva, E. A comparative evaluation of Bayes, functions, trees, meta,
rules and lazy machine learning algorithms for the discrimination of different breeding lines and varieties of potato based on
spectroscopic data. Eur. Food Res. Technol. 2022, 248, 1765–1775. [CrossRef]

42. Koklu, M.; Sarigil, S.; Ozbek, O. The use of machine learning methods in classification of pumpkin seeds (Cucurbita pepo L.). Genet.
Resour. Crop Evol. 2021, 68, 2713–2726. [CrossRef]

43. Ropelewska, E.; Slavova, V.; Sabanci, K.; Aslan, M.F.; Cai, X.; Genova, S. Discrimination of onion subjected to drought and normal
watering mode based on fluorescence spectroscopic data. Comput. Electron. Agric. 2022, 196, 106916. [CrossRef]

44. Yasmin, J.; Lohumi, S.; Ahmed, M.R.; Kandpal, L.M.; Faqeerzada, M.A.; Kim, M.S.; Cho, B.-K. Improvement in Purity of Healthy
Tomato Seeds Using an Image-Based One-Class Classification Method. Sensors 2020, 20, 2690. [CrossRef]

45. Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; University
of Waikato: Hamilton, New Zealand, 2016.

46. Frank, E.; Hall, M.; Witten, I. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”; The WEKA
Workbench; Elsevier: Amsterdam, The Netherlands, 2016.

47. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Practical machine learning tools and techniques. In Proceedings of the DATA MINING,
Las Vegas, NV, USA, 20–23 June 2005; p. 4.

48. Ropelewska, E.; Szwejda-Grzybowska, J. A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on
the cross-section and seed textures determined using image processing. J. Food Process Eng. 2021, 44, e13694. [CrossRef]

49. Sabanci, K.; Aslan, M.F.; Ropelewska, E.; Unlersen, M.F. A convolutional neural network-based comparative study for pepper seed
classification: Analysis of selected deep features with support vector machine. J. Food Process Eng. 2021, 45, e13955. [CrossRef]

http://doi.org/10.1007/s11042-019-08033-x
http://doi.org/10.3390/app12031047
http://doi.org/10.3233/MGS-180284
http://doi.org/10.1145/319382.319388
http://doi.org/10.1016/j.micpro.2020.103090
http://doi.org/10.1007/s11694-018-9913-2
http://doi.org/10.1007/s00217-021-03920-w
http://doi.org/10.1007/s00217-022-04003-0
http://doi.org/10.1007/s10722-021-01226-0
http://doi.org/10.1016/j.compag.2022.106916
http://doi.org/10.3390/s20092690
http://doi.org/10.1111/jfpe.13694
http://doi.org/10.1111/jfpe.13955

	Introduction 
	Materials and Methods 
	Material 
	Isolation and Molecular Identification of Yeast 
	Colonization on the Development of Tomato in Field Experiments 
	Fluorescence Spectroscopy 
	Discriminant Analysis 

	Results and Discussion 
	Conclusions 
	References

